Effective STL

Scott Meyers

Mentioned 78

"This is Effective C++ volume three - it's really that good." - Herb Sutter, independent consultant and secretary of the ISO/ANSI C++ standards committee "There are very few books which all C++ programmers must have. Add Effective STL to that list." - Thomas Becker, Senior Software Engineer, Zephyr Associates, Inc., and columnist, C/C++ Users Journal C++'s Standard Template Library is revolutionary, but learning to use it well has always been a challenge. Until now. In this book, best-selling author Scott Meyers ( Effective C++ , and More Effective C++ ) reveals the critical rules of thumb employed by the experts - the things they almost always do or almost always avoid doing - to get the most out of the library. Other books describe what's in the STL. Effective STL shows you how to use it. Each of the book's 50 guidelines is backed by Meyers' legendary analysis and incisive examples, so you'll learn not only what to do, but also when to do it - and why. Highlights of Effective STL include: Advice on choosing among standard STL containers (like vector and list), nonstandard STL containers (like hash_set and hash_map), and non-STL containers (like bitset). Techniques to maximize the efficiency of the STL and the programs that use it. Insights into the behavior of iterators, function objects, and allocators, including things you should not do. Guidance for the proper use of algorithms and member functions whose names are the same (e.g., find), but whose actions differ in subtle (but important) ways. Discussions of potential portability problems, including straightforward ways to avoid them. Like Meyers' previous books, Effective STL is filled with proven wisdom that comes only from experience. Its clear, concise, penetrating style makes it an essential resource for every STL programmer.

More on Amazon.com

Mentioned in questions and answers.

This question attempts to collect the few pearls among the dozens of bad C++ books that are published every year.

Unlike many other programming languages, which are often picked up on the go from tutorials found on the Internet, few are able to quickly pick up C++ without studying a well-written C++ book. It is way too big and complex for doing this. In fact, it is so big and complex, that there are very many very bad C++ books out there. And we are not talking about bad style, but things like sporting glaringly obvious factual errors and promoting abysmally bad programming styles.

Please edit the accepted answer to provide quality books and an approximate skill level — preferably after discussing your addition in the C++ chat room. (The regulars might mercilessly undo your work if they disagree with a recommendation.) Add a short blurb/description about each book that you have personally read/benefited from. Feel free to debate quality, headings, etc. Books that meet the criteria will be added to the list. Books that have reviews by the Association of C and C++ Users (ACCU) have links to the review.

Note: FAQs and other resources can be found in the C++ tag info and under . There is also a similar post for C: The Definitive C Book Guide and List

Beginner

Introductory, no previous programming experience

  • Programming: Principles and Practice Using C++ (Bjarne Stroustrup) (updated for C++11/C++14) An introduction to programming using C++ by the creator of the language. A good read, that assumes no previous programming experience, but is not only for beginners.

Introductory, with previous programming experience

  • C++ Primer * (Stanley Lippman, Josée Lajoie, and Barbara E. Moo) (updated for C++11) Coming at 1k pages, this is a very thorough introduction into C++ that covers just about everything in the language in a very accessible format and in great detail. The fifth edition (released August 16, 2012) covers C++11. [Review]

  • A Tour of C++ (Bjarne Stroustrup) (EBOOK) The “tour” is a quick (about 180 pages and 14 chapters) tutorial overview of all of standard C++ (language and standard library, and using C++11) at a moderately high level for people who already know C++ or at least are experienced programmers. This book is an extended version of the material that constitutes Chapters 2-5 of The C++ Programming Language, 4th edition.

  • Accelerated C++ (Andrew Koenig and Barbara Moo) This basically covers the same ground as the C++ Primer, but does so on a fourth of its space. This is largely because it does not attempt to be an introduction to programming, but an introduction to C++ for people who've previously programmed in some other language. It has a steeper learning curve, but, for those who can cope with this, it is a very compact introduction into the language. (Historically, it broke new ground by being the first beginner's book to use a modern approach at teaching the language.) [Review]

  • Thinking in C++ (Bruce Eckel) Two volumes; is a tutorial style free set of intro level books. Downloads: vol 1, vol 2. Unfortunately they’re marred by a number of trivial errors (e.g. maintaining that temporaries are automatically const), with no official errata list. A partial 3rd party errata list is available at (http://www.computersciencelab.com/Eckel.htm), but it’s apparently not maintained.

* Not to be confused with C++ Primer Plus (Stephen Prata), with a significantly less favorable review.

Best practices

  • Effective C++ (Scott Meyers) This was written with the aim of being the best second book C++ programmers should read, and it succeeded. Earlier editions were aimed at programmers coming from C, the third edition changes this and targets programmers coming from languages like Java. It presents ~50 easy-to-remember rules of thumb along with their rationale in a very accessible (and enjoyable) style. For C++11 and C++14 the examples and a few issues are outdated and Effective Modern C++ should be preferred. [Review]

  • Effective Modern C++ (Scott Meyers) This is basically the new version of Effective C++, aimed at C++ programmers making the transition from C++03 to C++11 and C++14.

  • Effective STL (Scott Meyers) This aims to do the same to the part of the standard library coming from the STL what Effective C++ did to the language as a whole: It presents rules of thumb along with their rationale. [Review]

Intermediate

  • More Effective C++ (Scott Meyers) Even more rules of thumb than Effective C++. Not as important as the ones in the first book, but still good to know.

  • Exceptional C++ (Herb Sutter) Presented as a set of puzzles, this has one of the best and thorough discussions of the proper resource management and exception safety in C++ through Resource Acquisition is Initialization (RAII) in addition to in-depth coverage of a variety of other topics including the pimpl idiom, name lookup, good class design, and the C++ memory model. [Review]

  • More Exceptional C++ (Herb Sutter) Covers additional exception safety topics not covered in Exceptional C++, in addition to discussion of effective object oriented programming in C++ and correct use of the STL. [Review]

  • Exceptional C++ Style (Herb Sutter) Discusses generic programming, optimization, and resource management; this book also has an excellent exposition of how to write modular code in C++ by using nonmember functions and the single responsibility principle. [Review]

  • C++ Coding Standards (Herb Sutter and Andrei Alexandrescu) “Coding standards” here doesn't mean “how many spaces should I indent my code?” This book contains 101 best practices, idioms, and common pitfalls that can help you to write correct, understandable, and efficient C++ code. [Review]

  • C++ Templates: The Complete Guide (David Vandevoorde and Nicolai M. Josuttis) This is the book about templates as they existed before C++11. It covers everything from the very basics to some of the most advanced template metaprogramming and explains every detail of how templates work (both conceptually and at how they are implemented) and discusses many common pitfalls. Has excellent summaries of the One Definition Rule (ODR) and overload resolution in the appendices. A second edition is scheduled for 2017. [Review]


Advanced

  • Modern C++ Design (Andrei Alexandrescu) A groundbreaking book on advanced generic programming techniques. Introduces policy-based design, type lists, and fundamental generic programming idioms then explains how many useful design patterns (including small object allocators, functors, factories, visitors, and multimethods) can be implemented efficiently, modularly, and cleanly using generic programming. [Review]

  • C++ Template Metaprogramming (David Abrahams and Aleksey Gurtovoy)

  • C++ Concurrency In Action (Anthony Williams) A book covering C++11 concurrency support including the thread library, the atomics library, the C++ memory model, locks and mutexes, as well as issues of designing and debugging multithreaded applications.

  • Advanced C++ Metaprogramming (Davide Di Gennaro) A pre-C++11 manual of TMP techniques, focused more on practice than theory. There are a ton of snippets in this book, some of which are made obsolete by typetraits, but the techniques, are nonetheless useful to know. If you can put up with the quirky formatting/editing, it is easier to read than Alexandrescu, and arguably, more rewarding. For more experienced developers, there is a good chance that you may pick up something about a dark corner of C++ (a quirk) that usually only comes about through extensive experience.


Reference Style - All Levels

  • The C++ Programming Language (Bjarne Stroustrup) (updated for C++11) The classic introduction to C++ by its creator. Written to parallel the classic K&R, this indeed reads very much alike it and covers just about everything from the core language to the standard library, to programming paradigms to the language's philosophy. [Review]

  • C++ Standard Library Tutorial and Reference (Nicolai Josuttis) (updated for C++11) The introduction and reference for the C++ Standard Library. The second edition (released on April 9, 2012) covers C++11. [Review]

  • The C++ IO Streams and Locales (Angelika Langer and Klaus Kreft) There's very little to say about this book except that, if you want to know anything about streams and locales, then this is the one place to find definitive answers. [Review]

C++11/14 References:

  • The C++ Standard (INCITS/ISO/IEC 14882-2011) This, of course, is the final arbiter of all that is or isn't C++. Be aware, however, that it is intended purely as a reference for experienced users willing to devote considerable time and effort to its understanding. As usual, the first release was quite expensive ($300+ US), but it has now been released in electronic form for $60US.

  • The C++14 standard is available, but seemingly not in an economical form – directly from the ISO it costs 198 Swiss Francs (about $200 US). For most people, the final draft before standardization is more than adequate (and free). Many will prefer an even newer draft, documenting new features that are likely to be included in C++17.

  • Overview of the New C++ (C++11/14) (PDF only) (Scott Meyers) (updated for C++1y/C++14) These are the presentation materials (slides and some lecture notes) of a three-day training course offered by Scott Meyers, who's a highly respected author on C++. Even though the list of items is short, the quality is high.

  • The C++ Core Guidelines (C++11/14/17/…) (edited by Bjarne Stroustrup and Herb Sutter) is an evolving online document consisting of a set of guidelines for using modern C++ well. The guidelines are focused on relatively higher-level issues, such as interfaces, resource management, memory management and concurrency affecting application architecture and library design. The project was announced at CppCon'15 by Bjarne Stroustrup and others and welcomes contributions from the community. Most guidelines are supplemented with a rationale and examples as well as discussions of possible tool support. Many rules are designed specifically to be automatically checkable by static analysis tools.

  • The C++ Super-FAQ (Marshall Cline, Bjarne Stroustrup and others) is an effort by the Standard C++ Foundation to unify the C++ FAQs previously maintained individually by Marshall Cline and Bjarne Stroustrup and also incorporating new contributions. The items mostly address issues at an intermediate level and are often written with a humorous tone. Not all items might be fully up to date with the latest edition of the C++ standard yet.

  • cppreference.com (C++03/11/14/17/…) (initiated by Nate Kohl) is a wiki that summarizes the basic core-language features and has extensive documentation of the C++ standard library. The documentation is very precise but is easier to read than the official standard document and provides better navigation due to its wiki nature. The project documents all versions of the C++ standard and the site allows filtering the display for a specific version. The project was presented by Nate Kohl at CppCon'14.


Classics / Older

Note: Some information contained within these books may not be up-to-date or no longer considered best practice.

  • The Design and Evolution of C++ (Bjarne Stroustrup) If you want to know why the language is the way it is, this book is where you find answers. This covers everything before the standardization of C++.

  • Ruminations on C++ - (Andrew Koenig and Barbara Moo) [Review]

  • Advanced C++ Programming Styles and Idioms (James Coplien) A predecessor of the pattern movement, it describes many C++-specific “idioms”. It's certainly a very good book and might still be worth a read if you can spare the time, but quite old and not up-to-date with current C++.

  • Large Scale C++ Software Design (John Lakos) Lakos explains techniques to manage very big C++ software projects. Certainly a good read, if it only was up to date. It was written long before C++98, and misses on many features (e.g. namespaces) important for large scale projects. If you need to work in a big C++ software project, you might want to read it, although you need to take more than a grain of salt with it. The first volume of a new edition is expected in 2015.

  • Inside the C++ Object Model (Stanley Lippman) If you want to know how virtual member functions are commonly implemented and how base objects are commonly laid out in memory in a multi-inheritance scenario, and how all this affects performance, this is where you will find thorough discussions of such topics.

  • The Annotated C++ Reference Manual (Bjarne Stroustrup, Margaret A. Ellis) This book is quite outdated in the fact that it explores the 1989 C++ 2.0 version - Templates, exceptions, namespaces and new casts were not yet introduced. Saying that however this is book goes through the entire C++ standard of the time explaining the rationale, the possible implementations and features of the language. This is not a book not learn programming principles and patterns on C++, but to understand every aspect of the C++ language.

Someone brought this article to my attention that claims (I'm paraphrasing) the STL term is misused to refer to the entire C++ Standard Library instead of the parts that were taken from SGI STL.

(...) it refers to the "STL", despite the fact that very few people still use the STL (which was designed at SGI).

Parts of the C++ Standard Library were based on parts of the STL, and it is these parts that many people (including several authors and the notoriously error-ridden cplusplus.com) still refer to as "the STL". However, this is inaccurate; indeed, the C++ standard never mentions "STL", and there are content differences between the two.

(...) "STL" is rarely used to refer to the bits of the stdlib that happen to be based on the SGI STL. People think it's the entire standard library. It gets put on CVs. And it is misleading.

I hardly know anything about C++'s history so I can't judge the article's correctness. Should I refrain from using the term STL? Or is this an isolated opinion?

I've made this same argument recently, but I believe a little tolerance can be allowed. If Scott Meyers makes the same mistake, you're in good company.

It wasn't that long ago that I was a beginning coder, trying to find good books/tutorials on languages I wanted to learn. Even still, there are times I need to pick up a language relatively quickly for a new project I am working on. The point of this post is to document some of the best tutorials and books for these languages. I will start the list with the best I can find, but hope you guys out there can help with better suggestions/new languages. Here is what I found:

Since this is now wiki editable, I am giving control up to the community. If you have a suggestion, please put it in this section. I decided to also add a section for general be a better programmer books and online references as well. Once again, all recommendations are welcome.

General Programming

Online Tutorials
Foundations of Programming By Karl Seguin - From Codebetter, its C# based but the ideas ring true across the board, can't believe no-one's posted this yet actually.
How to Write Unmaintainable Code - An anti manual that teaches you how to write code in the most unmaintable way possible. It would be funny if a lot of these suggestions didn't ring so true.
The Programming Section of Wiki Books - suggested by Jim Robert as having a large amount of books/tutorials on multiple languages in various stages of completion
Just the Basics To get a feel for a language.

Books
Code Complete - This book goes without saying, it is truely brilliant in too many ways to mention.
The Pragmatic Programmer - The next best thing to working with a master coder, teaching you everything they know.
Mastering Regular Expressions - Regular Expressions are an essential tool in every programmer's toolbox. This book, recommended by Patrick Lozzi is a great way to learn what they are capable of.
Algorithms in C, C++, and Java - A great way to learn all the classic algorithms if you find Knuth's books a bit too in depth.

C

Online Tutorials
This tutorial seems to pretty consise and thourough, looked over the material and seems to be pretty good. Not sure how friendly it would be to new programmers though.
Books
K&R C - a classic for sure. It might be argued that all programmers should read it.
C Primer Plus - Suggested by Imran as being the ultimate C book for beginning programmers.
C: A Reference Manual - A great reference recommended by Patrick Lozzi.

C++

Online Tutorials
The tutorial on cplusplus.com seems to be the most complete. I found another tutorial here but it doesn't include topics like polymorphism, which I believe is essential. If you are coming from C, this tutorial might be the best for you.

Another useful tutorial, C++ Annotation. In Ubuntu family you can get the ebook on multiple format(pdf, txt, Postscript, and LaTex) by installing c++-annotation package from Synaptic(installed package can be found in /usr/share/doc/c++-annotation/.

Books
The C++ Programming Language - crucial for any C++ programmer.
C++ Primer Plus - Orginally added as a typo, but the amazon reviews are so good, I am going to keep it here until someone says it is a dud.
Effective C++ - Ways to improve your C++ programs.
More Effective C++ - Continuation of Effective C++.
Effective STL - Ways to improve your use of the STL.
Thinking in C++ - Great book, both volumes. Written by Bruce Eckel and Chuck Ellison.
Programming: Principles and Practice Using C++ - Stroustrup's introduction to C++.
Accelerated C++ - Andy Koenig and Barbara Moo - An excellent introduction to C++ that doesn't treat C++ as "C with extra bits bolted on", in fact you dive straight in and start using STL early on.

Forth

Books
FORTH, a text and reference. Mahlon G. Kelly and Nicholas Spies. ISBN 0-13-326349-5 / ISBN 0-13-326331-2. 1986 Prentice-Hall. Leo Brodie's books are good but this book is even better. For instance it covers defining words and the interpreter in depth.

Java

Online Tutorials
Sun's Java Tutorials - An official tutorial that seems thourough, but I am not a java expert. You guys know of any better ones?
Books
Head First Java - Recommended as a great introductory text by Patrick Lozzi.
Effective Java - Recommended by pek as a great intermediate text.
Core Java Volume 1 and Core Java Volume 2 - Suggested by FreeMemory as some of the best java references available.
Java Concurrency in Practice - Recommended by MDC as great resource for concurrent programming in Java.

The Java Programing Language

Python

Online Tutorials
Python.org - The online documentation for this language is pretty good. If you know of any better let me know.
Dive Into Python - Suggested by Nickola. Seems to be a python book online.

Perl

Online Tutorials
perldoc perl - This is how I personally got started with the language, and I don't think you will be able to beat it.
Books
Learning Perl - a great way to introduce yourself to the language.
Programming Perl - greatly referred to as the Perl Bible. Essential reference for any serious perl programmer.
Perl Cookbook - A great book that has solutions to many common problems.
Modern Perl Programming - newly released, contains the latest wisdom on modern techniques and tools, including Moose and DBIx::Class.

Ruby

Online Tutorials
Adam Mika suggested Why's (Poignant) Guide to Ruby but after taking a look at it, I don't know if it is for everyone. Found this site which seems to offer several tutorials for Ruby on Rails.
Books
Programming Ruby - suggested as a great reference for all things ruby.

Visual Basic

Online Tutorials
Found this site which seems to devote itself to visual basic tutorials. Not sure how good they are though.

PHP

Online Tutorials
The main PHP site - A simple tutorial that allows user comments for each page, which I really like. PHPFreaks Tutorials - Various tutorials of different difficulty lengths.
Quakenet/PHP tutorials - PHP tutorial that will guide you from ground up.

JavaScript

Online Tutorials
Found a decent tutorial here geared toward non-programmers. Found another more advanced one here. Nickolay suggested A reintroduction to javascript as a good read here.

Books
Head first JavaScript
JavaScript: The Good Parts (with a Google Tech Talk video by the author)

C#

Online Tutorials
C# Station Tutorial - Seems to be a decent tutorial that I dug up, but I am not a C# guy.
C# Language Specification - Suggested by tamberg. Not really a tutorial, but a great reference on all the elements of C#
Books
C# to the point - suggested by tamberg as a short text that explains the language in amazing depth

ocaml

Books
nlucaroni suggested the following:
OCaml for Scientists Introduction to ocaml
Using Understand and unraveling ocaml: practice to theory and vice versa
Developing Applications using Ocaml - O'Reilly
The Objective Caml System - Official Manua

Haskell

Online Tutorials
nlucaroni suggested the following:
Explore functional programming with Haskell
Books
Real World Haskell
Total Functional Programming

LISP/Scheme

Books
wfarr suggested the following:
The Little Schemer - Introduction to Scheme and functional programming in general
The Seasoned Schemer - Followup to Little Schemer.
Structure and Interpretation of Computer Programs - The definitive book on Lisp (also available online).
Practical Common Lisp - A good introduction to Lisp with several examples of practical use.
On Lisp - Advanced Topics in Lisp
How to Design Programs - An Introduction to Computing and Programming
Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp - an approach to high quality Lisp programming

What about you guys? Am I totally off on some of there? Did I leave out your favorite language? I will take the best comments and modify the question with the suggestions.

Java: SCJP for Java 6. I still use it as a reference.

Haskell:

O'Reilly Book:

  1. Real World Haskell, a great tutorial-oriented book on Haskell, available online and in print.

My favorite general, less academic online tutorials:

  1. The Haskell wikibook which contains all of the excellent Yet Another Haskell Tutorial. (This tutorial helps with specifics of setting up a Haskell distro and running example programs, for example.)
  2. Learn you a Haskell for Great Good, in the spirit of Why's Poignant Guide to Ruby but more to the point.
  3. Write yourself a Scheme in 48 hours. Get your hands dirty learning Haskell with a real project.

Books on Functional Programming with Haskell:

  1. Lambda calculus, combinators, more theoretical, but in a very down to earth manner: Davie's Introduction to Functional Programming Systems Using Haskell
  2. Laziness and program correctness, thinking functionally: Bird's Introduction to Functional Programming Using Haskell

Some books on Java I'd recommend:

For Beginners: Head First Java is an excellent introduction to the language. And I must also mention Head First Design Patterns which is a great resource for learners to grasp what can be quite challenging concepts. The easy-going fun style of these books are ideal for ppl new to programming.

A really thorough, comprehensive book on Java SE is Bruce Eckel's Thinking In Java v4. (At just under 1500 pages it's good for weight-training as well!) For those of us not on fat bank-bonuses there are older versions available for free download.

Of course, as many ppl have already mentioned, Josh Bloch's Effective Java v2 is an essential part of any Java developer's library.

Let's not forget Head First Java, which could be considered the essential first step in this language or maybe the step after the online tutorials by Sun. It's great for the purpose of grasping the language concisely, while adding a bit of fun, serving as a stepping stone for the more in-depth books already mentioned.

Sedgewick offers great series on Algorithms which are a must-have if you find Knuth's books to be too in-depth. Knuth aside, Sedgewick brings a solid approach to the field and he offers his books in C, C++ and Java. The C++ books could be used backwardly on C since he doesn't make a very large distinction between the two languages in his presentation.

Whenever I'm working on C, C:A Reference Manual, by Harbison and Steele, goes with me everywhere. It's concise and efficient while being extremely thorough making it priceless(to me anyways).

Languages aside, and if this thread is to become a go-to for references in which I think it's heading that way due to the number of solid contributions, please include Mastering Regular Expressions, for reasons I think most of us are aware of... some would also say that regex can be considered a language in its own right. Further, its usefulness in a wide array of languages makes it invaluable.

C: “Programming in C”, Stephen G. Kochan, Developer's Library.

Organized, clear, elaborate, beautiful.

C++

The first one is good for beginners and the second one requires more advanced level in C++.

I know this is a cross post from here... but, I think one of the best Java books is Java Concurrency in Practice by Brian Goetz. A rather advanced book - but, it will wear well on your concurrent code and Java development in general.

C#

C# to the Point by Hanspeter Mössenböck. On a mere 200 pages he explains C# in astonishing depth, focusing on underlying concepts and concise examples rather than hand waving and Visual Studio screenshots.

For additional information on specific language features, check the C# language specification ECMA-334.

Framework Design Guidelines, a book by Krzysztof Cwalina and Brad Abrams from Microsoft, provides further insight into the main design decisions behind the .NET library.

For Lisp and Scheme (hell, functional programming in general), there are few things that provide a more solid foundation than The Little Schemer and The Seasoned Schemer. Both provide a very simple and intuitive introduction to both Scheme and functional programming that proves far simpler for new students or hobbyists than any of the typical volumes that rub off like a nonfiction rendition of War & Peace.

Once they've moved beyond the Schemer series, SICP and On Lisp are both fantastic choices.

For C++ I am a big fan of C++ Common Knowledge: Essential Intermediate Programming, I like that it is organized into small sections (usually less than 5 pages per topic) So it is easy for me to grab it and read up on concepts that I need to review.

It is a must read for me the night before and on the plane to a job interview.

C Primer Plus, 5th Edition - The C book to get if you're learning C without any prior programming experience. It's a personal favorite of mine as I learned to program from this book. It has all the qualities a beginner friendly book should have:

  • Doesn't assume any prior exposure to programming
  • Enjoyable to read (without becoming annoying like For Dummies /
  • Doesn't oversimplify

For Javascript:

For PHP:

For OO design & programming, patterns:

For Refactoring:

For SQL/MySQL:

  • C - The C Programming Language - Obviously I had to reference K&R, one of the best programming books out there full stop.
  • C++ - Accelerated C++ - This clear, well written introduction to C++ goes straight to using the STL and gives nice, clear, practical examples. Lives up to its name.
  • C# - Pro C# 2008 and the .NET 3.5 Platform - Bit of a mouthful but wonderfully written and huge depth.
  • F# - Expert F# - Designed to take experienced programmers from zero to expert in F#. Very well written, one of the author's invented F# so you can't go far wrong!
  • Scheme - The Little Schemer - Really unique approach to teaching a programming language done really well.
  • Ruby - Programming Ruby - Affectionately known as the 'pick axe' book, this is THE defacto introduction to Ruby. Very well written, clear and detailed.

Are there guidelines on how one should write new container which will behave like any STL container?

You will need to read the C++ Standard section about Containers and requirements the C++ Standard imposes for container implementations.

The relevant chapter in C++03 standard is:

Section 23.1 Container Requirements

The relevant chapter in C++11 standard is:

Section 23.2 Container Requirements

The near-final draft of the C++11 standard is freely available here.

You might as well, read some excellent books which will help you understand the requirements from an perspective of user of the container. Two excellent books which struck my mind easily are:

Effective STL by Scott Meyers &
The C++ Standard Library: A Tutorial and Reference by Nicolai Josutils

Assuming a map where you want to preserve existing entries. 20% of the time, the entry you are inserting is new data. Is there an advantage to doing std::map::find then std::map::insert using that returned iterator? Or is it quicker to attempt the insert and then act based on whether or not the iterator indicates the record was or was not inserted?

The answer is you do neither. Instead you want to do something suggested by Item 24 of Effective STL by Scott Meyers:

typedef map<int, int> MapType;    // Your map type may vary, just change the typedef

MapType mymap;
// Add elements to map here
int k = 4;   // assume we're searching for keys equal to 4
int v = 0;   // assume we want the value 0 associated with the key of 4

MapType::iterator lb = mymap.lower_bound(k);

if(lb != mymap.end() && !(mymap.key_comp()(k, lb->first)))
{
    // key already exists
    // update lb->second if you care to
}
else
{
    // the key does not exist in the map
    // add it to the map
    mymap.insert(lb, MapType::value_type(k, v));    // Use lb as a hint to insert,
                                                    // so it can avoid another lookup
}

Parentheses in C++ are used in many places: e.g. in function calls and grouping expressions to override operator precedence. Apart from illegal extra parentheses (such as around function call argument lists), a general -but not absolute- rule of C++ is that extra parentheses never hurt:

5.1 Primary expressions [expr.prim]

5.1.1 General [expr.prim.general]

6 A parenthesized expression is a primary expression whose type and value are identical to those of the enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The parenthesized expression can be used in exactly the same contexts as those where the enclosed expression can be used, and with the same meaning, except as otherwise indicated.

Question: in which contexts do extra parentheses change the meaning of a C++ program, other than overriding basic operator precedence?

NOTE: I consider the restriction of pointer-to-member syntax to &qualified-id without parentheses to be outside the scope because it restricts syntax rather than allowing two syntaxes with different meanings. Similarly, the use of parentheses inside preprocessor macro definitions also guards against unwanted operator precedence.

TL;DR

Extra parentheses change the meaning of a C++ program in the following contexts:

  • preventing argument-dependent name lookup
  • enabling the comma operator in list contexts
  • ambiguity resolution of vexing parses
  • deducing referenceness in decltype expressions
  • preventing preprocessor macro errors

Preventing argument-dependent name lookup

As is detailed in Annex A of the Standard, a post-fix expression of the form (expression) is a primary expression, but not an id-expression, and therefore not an unqualified-id. This means that argument-dependent name lookup is prevented in function calls of the form (fun)(arg) compared to the conventional form fun(arg).

3.4.2 Argument-dependent name lookup [basic.lookup.argdep]

1 When the postfix-expression in a function call (5.2.2) is an unqualified-id, other namespaces not considered during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope friend function or function template declarations (11.3) not otherwise visible may be found. These modifications to the search depend on the types of the arguments (and for template template arguments, the namespace of the template argument). [ Example:

namespace N {
    struct S { };
    void f(S);
}

void g() {
    N::S s;
    f(s);   // OK: calls N::f
    (f)(s); // error: N::f not considered; parentheses
            // prevent argument-dependent lookup
}

—end example ]

Enabling the comma operator in list contexts

The comma operator has a special meaning in most list-like contexts (function and template arguments, initializer lists etc.). Parentheses of the form a, (b, c), d in such contexts can enable the comma operator compared to the regular form a, b, c, d where the comma operator does not apply.

5.18 Comma operator [expr.comma]

2 In contexts where comma is given a special meaning, [ Example: in lists of arguments to functions (5.2.2) and lists of initializers (8.5) —end example ] the comma operator as described in Clause 5 can appear only in parentheses. [ Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. —end example ]

Ambiguity resolution of vexing parses

Backward compatibility with C and its arcane function declaration syntax can lead to surprising parsing ambiguities, known as vexing parses. Essentially, anything that can be parsed as a declaration will be parsed as one, even though a competing parse would also apply.

6.8 Ambiguity resolution [stmt.ambig]

1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indistinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a declaration.

8.2 Ambiguity resolution [dcl.ambig.res]

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8 can also occur in the context of a declaration. In that context, the choice is between a function declaration with a redundant set of parentheses around a parameter name and an object declaration with a function-style cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any construct that could possibly be a declaration a declaration. [ Note: A declaration can be explicitly disambiguated by a nonfunction-style cast, by an = to indicate initialization or by removing the redundant parentheses around the parameter name. —end note ] [ Example:

struct S {
    S(int);
};

void foo(double a) {
    S w(int(a));  // function declaration
    S x(int());   // function declaration
    S y((int)a);  // object declaration
    S z = int(a); // object declaration
}

—end example ]

A famous example of this is the Most Vexing Parse, a name popularized by Scott Meyers in Item 6 of his Effective STL book:

ifstream dataFile("ints.dat");
list<int> data(istream_iterator<int>(dataFile), // warning! this doesn't do
               istream_iterator<int>());        // what you think it does

This declares a function, data, whose return type is list<int>. The function data takes two parameters:

  • The first parameter is named dataFile. It's type is istream_iterator<int>. The parentheses around dataFile are superfluous and are ignored.
  • The second parameter has no name. Its type is pointer to function taking nothing and returning an istream_iterator<int>.

Placing extra parentheses around the first function argument (parentheses around the second argument are illegal) will resolve the ambiguity

list<int> data((istream_iterator<int>(dataFile)), // note new parens
                istream_iterator<int>());          // around first argument
                                                  // to list's constructor

C++11 has brace-initializer syntax that allows to side-step such parsing problems in many contexts.

Deducing referenceness in decltype expressions

In contrast to auto type deduction, decltype allows referenceness (lvalue and rvalue references) to be deduced. The rules distinguish between decltype(e) and decltype((e)) expressions:

7.1.6.2 Simple type specifiers [dcl.type.simple]

4 For an expression e, the type denoted by decltype(e) is defined as follows:

— if e is an unparenthesized id-expression or an unparenthesized class member access (5.2.5), decltype(e) is the type of the entity named by e. If there is no such entity, or if e names a set of overloaded functions, the program is ill-formed;

— otherwise, if e is an xvalue, decltype(e) is T&&, where T is the type of e;

— otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;

— otherwise, decltype(e) is the type of e.

The operand of the decltype specifier is an unevaluated operand (Clause 5). [ Example:

const int&& foo();
int i;
struct A { double x; };
const A* a = new A();
decltype(foo()) x1 = 0;   // type is const int&&
decltype(i) x2;           // type is int
decltype(a->x) x3;        // type is double
decltype((a->x)) x4 = x3; // type is const double&

—end example ] [ Note: The rules for determining types involving decltype(auto) are specified in 7.1.6.4. —end note ]

The rules for decltype(auto) have a similar meaning for extra parentheses in the