Dependency Parsing

Sandra K├╝bler, Ryan McDonald, Joakim Nivre

Mentioned 1

Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts

More on Amazon.com

Mentioned in questions and answers.

I'm not sure whats the best algorithm to use for the classification of relationships in words. For example in the case of a sentence such as "The yellow sun" there is a relationship between yellow and sun. THe machine learning techniques I have considered so far are Baynesian Statistics, Rough Sets, Fuzzy Logic, Hidden markov model and Artificial Neural Networks.

Any suggestions please?

thank you :)

Like the user dmcer pointed out, dependency parsers will help you. There is tons of literature on dependency parsing you can read. This book and these lecture notes are good starting points to introduce the conventional methods.

The Link Grammar Parser which is sorta like dependency parsing uses Sleator and Temperley's Link Grammar syntax for producing word-word linkages. You can find more information on the original Link Grammar page and on the more recent Abiword page (Abiword maintains the implementation now).

For an unconventional approach to dependency parsing, you can read this paper that models word-word relationships analogous to subatomic particle interactions in chemistry/physics.